线性代数是什么意思
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
延伸阅读
线性代数的发展历程
历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的行列式理论和矩阵论的创立与发展,这些内容已成为我们线性代数教材的主要部分。
作为代表“线性”的最基本的概念–向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。
线性代数的发展历史上做出重要贡献的数学家如下:
1、关孝和(约1642—1708年),日本,最早提出行列式的概念;代表作《发微算法》。出身武士家庭,曾随高原吉种学过数学,之后在江户任贵族家府家臣,掌管财赋,1706年退职。他是日本古典数学(和算)的奠基人,也是关氏学派的创始人,在日本被尊称为算圣。
2、柯西(1789-1857),法国,1815 年启用行列式名词,1841 年提出特征方程概念;
3、西尔维斯特(1814-1897),英国,1850 年启用矩阵名词,1852 年发现惯性定律;
4、凯莱(1821-1895),英国,1855 年引入定义矩阵乘法等运算;
5、雅可比(1804-1851),德国,重新发现并证明惯性定律;
6、格拉斯曼(1809-1877),德国,1844 至1862 年间创建高维线性空间理论;
7、维尔斯特拉斯(1815-1897),德国,1868 年完成二次型理论;
线性代数到底是解决什么问题的有关科目
线性代数是大学工科一门基础数学课程,想了解解决什么问题,我们可以从线性代数的具体内容说起,大概内容包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
总之对以后工科,特别是一些理论强的学科学习,线性代数绝对是一个必备的基础课程。
代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。抽象的目的不是为了显示某些人智商高,而是为了解决问题的方便!为了提高效率。把一些看似不相关的问题化归为一类问题。线性代数中的一个重要概念是线性空间(对所谓的“加法”和“数乘”满足8条公理的集合),而其元素被称为向量。也就是说,只要满足那么几条公理,我们就可以对一个集合进行线性化处理。可以把一个不太明白的结构用已经熟知的线性代数理论来处理,如果我们可以知道所研究的对象的维数(比如说是n),我们就可以把它等同为R^n,量决定了质!多么深刻而美妙的结论!上面我说的是代数的一个抽象特性。这个对我们的影响是思想性的!如果我们能够把他用在生活中,那么我们的生活将是高效率的。
下面简要谈一下线性代数的具体应用。线性代数研究最多的就是矩阵了。矩阵又是什么呢?矩阵就是一个数表,而这个数表可以进行变换,以形成新的数表。也就是说如果你抽象出某种变化的规律,你就可以用代数的理论对你研究的数表进行变换,并得出你想要的一些结论。
另外,进一步的学科有运筹学。运筹学的一个重要议题是线性规划,而线性规划要用到大量的线性代数的处理。如果掌握的线性代数及线性规划,那么你就可以讲实际生活中的大量问题抽象为线性规划问题。以得到最优解:比如你是一家小商店的老板,你可以合理的安排各种商品的进货,以达到最大利润。如果你是一个大家庭中的一员,你又可以用规划的办法来使你们的家庭预算达到最小。这些都是实际的应用啊!
总之,线性代数历经如此长的时间而生命力旺盛,可见她的应用之广!多读读书吧,数学是美的,更是有用的!
线性代数内容
线性代数课程内容
一、课程的性质与任务
线性代数课程是高等学校理工科各专业学生的一门必修的重要基础理论课,它广泛应用于科学技术的各个领域。尤其是计算机日益发展和普及的今天,使线性代数成为工科学生所必备的基础理论知识和重要的数学工具。线性代数是为培养中国社会主义现代化建设所需要的高质量专门人才服务的。通过本课程的学习,要使学生获得:
1.行列式
2.矩阵
3.向量组的相关性、矩阵的秩
4.线性方程组
5.特征值与特征向量
6.相似矩阵与二次型
等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学知识去分析和解决问题的能力
什么是线性代数
线性代数是一种连续形式的数学,被广泛应用于理工类学科中;因为它可以帮助我们对自然现象建模,然后进行高效的计算。但是,由于线性代数是一种连续而非离散的数学,因此,很多计算机科学家都不太了解它。
另外,线性代数还在几乎所有的数学学科中都拥有着核心地位:例如几何学和泛函分析。